Adaptive Smoothing Neural Networks in Foreign Exchange Rate Forecasting
نویسندگان
چکیده
This study proposes a novel forecasting approach – an adaptive smoothing neural network (ASNN) – to predict foreign exchange rates. In this new model, adaptive smoothing techniques are used to adjust the neural network learning parameters automatically by tracking signals under dynamic varying environments. The ASNN model can make the network training process and convergence speed faster, and make network’s generalization stronger than the traditional multi-layer feed-forward network (MLFN) model does. To verify the effectiveness of the proposed model, three major international currencies (British pounds, euros and Japanese yen) are chosen as the forecasting targets. Empirical analyses reveal that the proposed novel forecasting model outperforms the other comparable models. Furthermore, experimental results also show that the proposed model is an effective alternative approach for foreign exchange rate forecasting.
منابع مشابه
A hybrid computational intelligence model for foreign exchange rate forecasting
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...
متن کاملForecasting U.S. Tourist Arrivals using Singular Spectrum
5 This paper introduces Singular Spectrum Analysis (SSA) for tourism demand forecasting 6 via an application into total monthly U.S. Tourist arrivals from 1996-2012. The global 7 tourism industry is today, a key driver of foreign exchange inflows to an economy. Here, we 8 compare the forecasting results from SSA with those from ARIMA, Exponential Smoothing 9 (ETS) and Neural Networks (NN). We f...
متن کاملForecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System
Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...
متن کاملForeign Exchange Rate Prediction using Computational Intelligence Methods
This paper presents the application of six nonlinear ensemble architectures to forecasting the foreign exchange rates in the computational intelligence paradigm. Intelligent techniques such as Backpropagation neural network (BPNN), Wavelet neural network (WNN), Multivariate adaptive regression splines (MARS), Support vector regression (SVR), Dynamic evolving neuro-fuzzy inference system (DENFIS...
متن کاملForecasting foreign exchange rates with
(2013) Forecasting foreign exchange rates with adaptive neural networks using radial basis functions and particle swarm optimization. The content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization...
متن کامل